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The Hard Sphere Model of a Gas

(:L'l,gl) (xjvgj)
d (%3, &)
(w2,&2) ‘@
A

@ Particles are modeled as solid spheres wth diameter o.

@ Dynamical features are linear movement and collisions among patrticles

@ We will work with periodic boundary conditions (= no collisions with 9A)

@ The state of each particle is given by its position z; and its velocity &;.

@ The state of the system is given as a point 2V = (z1,&; ... zn,&x) in the
phase space I' = {zV € AN x RV, |z; — ;| > o fori # j}
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Probability distribution functions

@ Number of particles N ~ O(10%®) = For practical purposes we use a
probability density function P(2V,t) = P(z1,&1,...,2N, &N, 1),
PN, t) € LY(T).

@ Essential property:

P(...Ii,éi...l‘j,fj...,t):P(...LEj,fj...l‘i,fi...,t)

@ LetT% : T — I describe the time evolution of the system. We have for all
Borel sets A:

N N t N t N t N artzN N
P(z%,0)dz" = P(T 2", t)d(T*z7) = | P(T*2",t) ~ | 4z
A TtA A 0z

Tt
s

@ We will now prove that ‘8TtZN ‘ =1

9zN
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The Jacobian of the time evolution

@ Between collisions: = = x; + &t, £, = &;, SO

'a(x;,gg) Y (1 t)‘_l
a(l‘jvéj) no collision N 01
@ At collision points: z/; = x;, £/ # &;, SO
ox!, ox
iy SN0 for1<i,j<N.
81’]' 7 8fj =)

\51
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The Jacobian of the time evolution

@ At collision points we have:

H+&E o= g+ Momentum conservation

&1]? + &2

@ [t follows that

€112 + |47 Energy conservation

la = E1a — nalng - (§15 — &25)]
20 = 20 T Nalng - (§15 — E25)]

where n = (z1 — z3)/|x1 — x2|. SO

23]

& = a8 — NaN
851,8 B B
3P

= NaNg

02
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The Jacobian of the time evolution

@ Putting the pieces together:

9z Oz

3(3?3')5]') collision dzy /2 3% %
012 8722 672
&1 06
1 0
0 1
0 1 —nnT nnT
nnt 1—nnT
=1

@ Several (distinct) collisions at the same time do not change this result.
@ The following sets have zero measure and can be neglected:

e Configurations leading to collisions that involve 3 or more particles.
e Configurations leading to infinitely many collisions in a finite time.

(Proof: Cercignati, lliner, Pulvirenti: The Mathematical theory of Dilute Gases, Springer 1994)
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The Liouville Equation

@ We had
/ P(zN,0) = / P(T'2N 1) or'a"| ) N
A ’ o A ’ 8zN
N———

=1
@ As A was arbitrary, we obtain the Liouville Equation

Theorem (Liouville Equation)

For a hard sphere system with a measurable probability density
function P the following equation holds:

d
EP(thN,t) =0 for almostall 2V

@ For smooth P this reduces to

Z 2 axl
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The s-particle distribution function

@ The N-particle distribution P is not of much practical use. Therefore we
define the s-particle distribution function

(.’L']_ £17" xs;fsﬂt) _/P(xhgla" xN7£N H dx_]déj

Jj=s+1

It gives the probability of finding s preselected particles in a configuration
(r1,&1 ... 25, &), leaving the parameters of the other particles arbitrary.

@ We will now derive a relation between P ) and P(s+1),

@ For smooth P, the Liouville equat|on + Z -1 & - =0 yields
ap or &
- / S [ dwsdg
j s+1
N

+ Z/gkap II dzjde; =0

k=s+1 Jj=s+1
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Derivation of the BBGKY Hierarchy

@ First integral:

s 8P N s 8P(S) s N ( )
Rl e, — g ST ¢ o
> [ege 1] duds =Y 65 =3 3 [ P npdonds
=1 Jj=s+1 1=1 i=1 k=s+1
doii = surface element of the sphere |z; — x| = o around xy,
Nik = Outer normal to this sphere
P(S+1) = P(s+1)(1‘1,§1...x3,§s,l‘i — Nk 0, §k7t)

Nik
|x; —xk| =0
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Derivation of the BBGKY Hierarchy

@ The second integral can be solved using the Gauss theorem:

N op XN
> /fkaTk H dr;dé; =
k=s+1 Jj=s+1

N s N

> / PEDg ngdogdés + Y / PEDg - ndoydépdadé; =
k=s+11=1 i,k=s+1

ik

N s 1 N

) Z/P(S+1)£s+l'nidgid§s+l_§ > /P(s+2)'(§i — &) nikdoikdEpda;dé;
k=s+1 i=1 i,k_jj;rl \:’:’

@ At collisions, each point on the hemisphere Vi - n;; > 0 correspondes to
a pointon V- ng, < 0:
P(S+2)(' .. xi7€i7$k7€k7t) =
PE (i, & — nig(nanVik), T, €k + nar(nisVir), 1)
@ Therefore, [ P3+2) .. = 0.
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Derivation of the BBGKY Hierarchy

@ Back to the original equation'

ort) opts
o Z&T - S)Z/ PO (& =€) - nidoidEea
i=1

ws+1—>w1—no — S 2 Z/ S+1 €s+1) -ndn d§s+1

= Q§+1P(s+l)(z ;1)
@ For less stringent assumptions, we obtain the general form of the
Born-Bogoliubov-Green-Kirkwood-Yvon (BBGKY) hierarchy:

Theorem (BBGKY Hierarchy)

d
EP<S)(th5,t) = QI PUTY(T4 1)

QILPU (T ) = (N—s)02 /dn /dssﬂ(a-—ssﬂ)-n
=1

PEHN(T 28 Tt e, — no, £gy1,t)

v
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e The Boltzmann Transport Equation
@ Informal Derivation

@ Sketch of a Rigorous Proof
@ Some remarks on (ir)reversibility
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Informal Derivation of the Boltzmann Equation

@ BBGKY hierarchy is impractical for real calculations: Equation for P(*)
depends of P(s+1),

@ Intuitively, chaotic particle motion should be uncorrelated
= There should be a closed equation for Pt (z, ¢, 1)

@ “Chaos” means

POy, & ..o ag, &6 t) = [[ PO, &irt)

=1
@ We will work in the Boltzmann-Grad Limit N — oo, ¢ — 0, No? = a € R.
@ Insert this into the BBGKY equation for P(1):

M = Q3P (x,¢,1)
= oé/szdn/df* 5 E P(2)(:L',£,$,§*,t)

(LEMM /@msgg-

(PO & HHPO(a,€l,t) = PO, &, )PV (w,6..1))
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Informal Derivation of the Boltzmann Equation

@ We obtain the Boltzmann Equation:

dp®
%:aédn/d@m-mm

(PO, &', 1) PD (s, €., 1) - PV (€, )PD(3,E,.1))

@ Intuitive illustration: Without collisions the Liouville equation yields

opP opP
ot + Oz
@ The right hand side of the Boltzmann Equation has the form Gain — Loss
= It describes the influence of collisions.

@ The informal derivation lacks the proofs that

e The chaos assumption P**) =[] P is justified for ¢ > 0
e Thelimit N — oo, 0 — 0, No? = « exists.

=0
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Formulation of the Theorem

@ Start with the BBGKY hierarchy:

d (o) i s
—PONT 2% 1) = Q7 PerI(T2° 1)

dt
N — 3)02 ’Z; /S2dn /d§s+1(fz‘ —&sx1) -

p(5+1)(ths, Ttl'y', —no,&et1, t)

QLAPCI(ITE 1)

@ In the Boltzmann-Grad limit N — oo, 0 — 0, No? = a we expect to obtain
the Boltzmann Hierarchy

d S S S S
TN 1) = Q2 FO (T30, 1)

where T¢ denotes collisionless flow.

o If f)(2°,¢) = [[;_, f(2:,&,t), the Boltzmann hierarchy and the
Boltzmann equation are equivalent.

@ |dea: Prove that the Boltzmann hierarchy is really the limit of the BBGKY
hierarchy and that its solution factorizes under certain assumptions.
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Formulation of the Theorem

Theorem (Rigorous Validity of the Boltzmann Equation)

Let (A x R?)37 = {2° € A* x R; |; — a5 > 0,4 # j,0 > 0}. Assume that

@ P*)(z*) = P()(2*,0) is continuous on (A x R?)2 and at collision points.

@ The limit limy_ o POS) f(s (2%) with continuous fés) ‘A xR SR
exists and is uniform on compact subsets of (A x [R3);7"

@ The initial values satisfy fos)(zs) =T1._, fo(z:,&) (“Initial chaos™)
© There are positive constants 3, C and b such that
sup, - Pés) <C-bexp (-85 €2)
Then, on a sufficiently small interval [0, ¢,] the solution of the Boltzmann
hierarchy exists and is unique. It is the limit of the solution of the BBGKY
hierarchy and has the form f(*)(z°,¢) = [1;_, f(zi, &), i.e. factorization is
preserved. Here f is a solution of the Boltzmann equation to the initial data fy.

(Full Proof: Cercignati, lliner, Pulvirenti: The Mathematical theory of Dilute Gases, Springer 1994)
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Outline of the Proof

@ The BBGKY hierarchy £ P()(T"2* ¢) = Q7,, P+ (T 2*, t) is solved by
PO 1) = PP() + / dty (QF,, P*HY) (T12°, 1)
0

ot
o POG ) = S,()PY(0) + / dt1S,(t — t1) (Q7, P*HY) (2%, 1)
0

where S, (t)f(z%) = f(T'z%).
@ lIteration of this formula gives

n—1
P)( Z / dty / dty .. / dt,

n=0

So(t = 11)Q711So(t1 — 12) .- QT4 So(tn) P (%)

@ For the Boltzmann hierarchy

t1 tn—1
(25 1) Z / dt / dts .. / dt,,

So(t — 11)Q%150(t1 — 12) .. Q% So(t) f5™ ) (2°)
The series is infinite, therefore convergence is nontrivial!
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Outline of the Proof

The proof proceeds as follows:

@ Show that the convergence of the BBGKY series > ¢ to the Boltzmann
series > a® holds term by term.

@ Find a series b, < oo satisfying 0 < |a9|, |a®| < b,,. The existence of
such a series proves the convergence > aZ — Y al.

@ Unigueness follows from the constructions in the previous steps.

© Proof of the factorization property:
The solution of the Boltzmann hierarchy for f(!) exists according to step
@ and @. Show that f(*) = [T, fM(z;,&,t) solves the Boltzmann
hierarchy. By uniqueness (step @) the propagation of chaos follows.
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Some remarks on (ir)reversibility

@ Consider the time reversal operation 7 : t — —t.
@ Classical mechanics is invariant unter 7: Every motion can be reversed.
@ The Boltzmann equation is not 7 -invariant (no proof here):

PO &) _

\ftT \LT

~dPW(z,&,1)

= C

dt

@ The proof of the Boltzmann equation shows how one can obtain
irreversible dynamics from a reversible theory.

@ Intuitive explanation: In Boltzmann dynamics, the inverse process
requires initial conditions that are strongly disfavoured if initial chaos
£ = 11 f holds.
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Outline

e Generalizations and Limitations of the Boltzmann Equation
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Generalizations of the Boltzmann Equation

Electrons in a Metal

of d& af | dwi Of

8t dt 652 dt 6.’1)1‘ o
o (U - 1S - 8- {0 - £ENSE - &)

Gain Loss

f(z,&,t) = Electron distribution function | V' = Volume of the semiconductor
S = Scattering probability m = Electron mass

Particle Transport in the Early Universe

on

— +3Hn = C

ot +3Hn
n(|z|, t) = Particle density, integrated over &
H = Hubble’s constant parametrizing the expansion of the universe
C = Collision integral

vy
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Limitations of the Boltzmann Equation

Applicability of the Boltzmann Big Bang

Equation to processes in the early i
universe is doubtful:

@ Time between two collisions is
comparable to duration of
collision

069\'5 RE\O“'IZEl'mn

@ Hard sphere potential is a bad o
approximation to the real
dynamics

@ Quantum Effects cannot be
described by simple collision
integrals

PRESENT
13.7 Billion Years
after the Big Bang
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Conclusions

The hard sphere model can describe many physical systems.
Its microscopic evolution is governed by the Liouville equation dP/dt = 0.

The BBGKY hierarchy connects the full probability density function P to
the 1-particle distrbution P(1),

In the Boltzmann-Grad limit N — oo, 0 — 0, No? = o we obtain the
Boltzmann equation

dPM(x, €.t
LD o2 [ an [aslie-)-n
S+
(P(l)($7 6/7 t)P(l)(x7 Efm t) - P(l)(xv 57 t)P(l)(J," 6*7 t))
which is a closed equation for the 1-particle distribution.

The proof of the Boltzmann equation shows how irreversible behaviour
arises in nature.

The Boltzmann equation can be extended to describe complex systems
like semiconductors or the early universe. However, it has its limitations in
extreme situations.
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